Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
Front Microbiol ; 13: 844283, 2022.
Article in English | MEDLINE | ID: covidwho-1952412

ABSTRACT

The severity, disabilities, and lethality caused by the coronavirus 2019 (COVID-19) disease have dumbfounded the entire world on an unprecedented scale. The multifactorial aspect of the infection has generated interest in understanding the clinical history of COVID-19, particularly the classification of severity and early prediction on prognosis. Metabolomics is a powerful tool for identifying metabolite signatures when profiling parasitic, metabolic, and microbial diseases. This study undertook a metabolomic approach to identify potential metabolic signatures to discriminate severe COVID-19 from non-severe COVID-19. The secondary aim was to determine whether the clinical and laboratory data from the severe and non-severe COVID-19 patients were compatible with the metabolomic findings. Metabolomic analysis of samples revealed that 43 metabolites from 9 classes indicated COVID-19 severity: 29 metabolites for non-severe and 14 metabolites for severe disease. The metabolites from porphyrin and purine pathways were significantly elevated in the severe disease group, suggesting that they could be potential prognostic biomarkers. Elevated levels of the cholesteryl ester CE (18:3) in non-severe patients matched the significantly different blood cholesterol components (total cholesterol and HDL, both p < 0.001) that were detected. Pathway analysis identified 8 metabolomic pathways associated with the 43 discriminating metabolites. Metabolomic pathway analysis revealed that COVID-19 affected glycerophospholipid and porphyrin metabolism but significantly affected the glycerophospholipid and linoleic acid metabolism pathways (p = 0.025 and p = 0.035, respectively). Our results indicate that these metabolomics-based markers could have prognostic and diagnostic potential when managing and understanding the evolution of COVID-19.

4.
Mol Biol Rep ; 49(7): 6931-6943, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1750790

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is known that host microRNAs (miRNAs) can be modulated to favor viral infection or to protect the host. Herein, we report preliminary results of a study aiming at identifying differentially expressed plasmatic miRNAs in Brazilian patients with COVID-19. METHODS AND RESULTS: miRNAs were extracted from the plasma of eight patients with COVID-19 (four patients with mild COVID-19 and four patients with severe/critical COVID-19) and four healthy controls. Patients and controls were matched for sex and age. miRNA expression levels were detected using high-throughput sequencing. Differential miRNA expression and enrichment analyses were further evaluated. A total of 18 miRNAs were differentially expressed between patients with COVID-19 and controls. miR-4433b-5p, miR-6780b-3p, miR-6883-3p, miR-320b, miR-7111-3p, miR-4755-3p, miR-320c, and miR-6511a-3p were the most important miRNAs significantly involved in the PI3K/AKT, Wnt/ß-catenin, and STAT3 signaling pathways. Moreover, 42 miRNAs were differentially expressed between severe/critical and mild patients with COVID-19. miR-451a, miR-101-3p, miR-185-5p, miR-30d-5p, miR-25-3p, miR-342-3p, miR-30e-5p, miR-150-5p, miR-15b-5p, and miR-29c-3p were the most important miRNAs significantly involved in the Wnt/ß-catenin, NF-κß, and STAT3 signaling pathways. CONCLUSIONS: If validated by quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in a larger number of participants, the miRNAs identified in this study might be used as possible biomarkers for the diagnosis and severity of COVID-19.


Subject(s)
COVID-19 , MicroRNAs , Brazil/epidemiology , COVID-19/genetics , Gene Expression Profiling/methods , Humans , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/genetics , SARS-CoV-2 , beta Catenin/genetics
5.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-630726.v1

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is known that host microRNAs (miRNAs) can be modulated to favor viral infection or to protect the host. Objective: The aim of this study was to identify differentially expressed circulating miRNAs in Brazilian patients with COVID-19 as potential biomarkers for diagnosis and severity. Methods: miRNAs were extracted from the blood plasma of eight patients with COVID-19 (four patients with mild/moderate COVID-19 and four patients with severe/critical COVID-19) and four healthy controls. The patients and controls were matched for sex and age. miRNA expression levels were detected using high-throughput sequencing. Differential miRNA expression and enrichment analyses were further evaluated. Results: A total of 18 human miRNAs were differentially expressed between patients with COVID-19 (n = 8) and controls (n = 4), with 13 significantly upregulated and five significantly downregulated miRNAs. miR-4433b-5p, miR-6780b-3p, miR-6883-3p, miR-320b, miR-7111-3p, miR-4755-3p, miR-320c, and miR-6511a-3p were the most important miRNAs found significantly involved in the PI3K/AKT, Wnt/β-catenin, and STAT3 signaling pathways, which have a crucial role in viral infections. Moreover, 42 miRNAs were differentially expressed between severe/critical patients with COVID-19 (n = 4) and mild/moderate patients with COVID-19 (n = 4). miR-451a, miR-101-3p, miR-185-5p, miR-30d-5p, miR-25-3p, miR-342-3p, miR-30e-5p, miR-150-5p, miR-15b-5p, and miR-29c-3p were the most important miRNAs found to be significantly involved in the Wnt/β-catenin, NF-κβ, and STAT3 signaling pathways, which play crucial roles in immune response and inflammation. Conclusions: Differentially expressed miRNAs found in this study may be used as potential biomarkers for the diagnosis and severity of COVID-19. Larger studies are needed to validate these miRNAs as biomarkers of COVID-19. 


Subject(s)
Coronavirus Infections , Virus Diseases , COVID-19 , Inflammation
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.17.21255518

ABSTRACT

As the current COVID-19 pandemic progresses, more symptoms and signals related to how the disease manifests in the human body arise in the literature. Skin lesions and coagulopathies may be confounding factors on routine care and patient management. We analyzed the metabolic and lipidic profile of the skin from COVID-19 patients using imprints in silica plates as a non-invasive alternative, in order to better understand the biochemical disturbances caused by SARS-CoV-2 in the skin. One hundred and one patients (64 COVID-19 positive patients and 37 control patients) were enrolled in the study from April 2020 to June 2020 during the first wave of COVID-19 in Sao Paulo, Brazil. Fourteen biomarkers were identified related to COVID-19 infection (7 increased and 7 decreased in COVID-19 patients). Remarkably, oleamide has shown promising performance, providing 79.0% of sensitivity on a receiver operating characteristic curve model. Species related to coagulation and immune system maintenance such as phosphatidylserines were decreased in COVID-19 patients; on the other hand, cytokine storm and immunomodulation may be affected by molecules increased in the COVID-19 group, particularly primary fatty acid amides and N-acylethanolamines, which are part of the endocannabinoid system. Our results show that skin imprints may be a useful, noninvasive strategy for COVID-19 screening, by electing a pool of biomarkers with diagnostic potential.


Subject(s)
COVID-19 , Blood Coagulation Disorders
7.
Anal Chem ; 93(4): 2471-2479, 2021 02 02.
Article in English | MEDLINE | ID: covidwho-1065764

ABSTRACT

COVID-19 is still placing a heavy health and financial burden worldwide. Impairment in patient screening and risk management plays a fundamental role on how governments and authorities are directing resources, planning reopening, as well as sanitary countermeasures, especially in regions where poverty is a major component in the equation. An efficient diagnostic method must be highly accurate, while having a cost-effective profile. We combined a machine learning-based algorithm with mass spectrometry to create an expeditious platform that discriminate COVID-19 in plasma samples within minutes, while also providing tools for risk assessment, to assist healthcare professionals in patient management and decision-making. A cross-sectional study enrolled 815 patients (442 COVID-19, 350 controls and 23 COVID-19 suspicious) from three Brazilian epicenters from April to July 2020. We were able to elect and identify 19 molecules related to the disease's pathophysiology and several discriminating features to patient's health-related outcomes. The method applied for COVID-19 diagnosis showed specificity >96% and sensitivity >83%, and specificity >80% and sensitivity >85% during risk assessment, both from blinded data. Our method introduced a new approach for COVID-19 screening, providing the indirect detection of infection through metabolites and contextualizing the findings with the disease's pathophysiology. The pairwise analysis of biomarkers brought robustness to the model developed using machine learning algorithms, transforming this screening approach in a tool with great potential for real-world application.


Subject(s)
COVID-19/diagnosis , Machine Learning , Metabolomics , Adult , Aged , Automation , Biomarkers/metabolism , Brazil , COVID-19/virology , Female , Humans , Male , Middle Aged , Risk Assessment , SARS-CoV-2/isolation & purification
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.24.20161828

ABSTRACT

COVID-19 is still placing a heavy health and financial burden worldwide. Impairments in patient screening and risk management play a fundamental role on how governments and authorities are directing resources, planning reopening, as well as sanitary countermeasures, especially in regions where poverty is a major component in the equation. An efficient diagnostic method must be highly accurate, while having a cost-effective profile. We combined a machine learning-based algorithm with instrumental analysis using mass spectrometry to create an expeditious platform that discriminate COVID-19 in plasma samples within minutes, while also providing tools for risk assessment, to assist healthcare professionals in patient management and decision-making. A cross-sectional study with 728 patients (369 confirmed COVID-19 and 359 controls) was enrolled from three Brazilian epicentres (Sao Paulo capital, Sao Paulo countryside and Manaus) in the months of April, May, June and July 2020. We were able to elect and identify 21 molecules that are related to the diseases pathophysiology and 26 features to patients health-related outcomes. With specificity >97% and sensitivity >83% from blinded data, this screening approach is understood as a tool with great potential for real-world application.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL